Electoric flux :-

The electric flux through a given area held inside an electric field is the measure of the total number of electric field lines of force passing through that area.

SI unit of electric flux is N-m2c on J-mc on V-m.

Cas unit of electric flux is dyne-cm2/c

Electric plux is given by the product of surface area and the component of electric field intensity normal to the area.

Electoric flux thorough small area element (ds) is

$$d\phi_E = (E\cos\theta)(ds)$$

$$d\phi_{\varepsilon} = \vec{E} \cdot d\vec{s}$$

The electric flux through the entire surface is:

$$\phi_{\rm E} = \int_{\rm s} \vec{\rm E} \cdot d\vec{\rm s}$$

$$\phi_{E} = \oint_{S} \vec{E} \cdot d\vec{S}$$
 when surface S is closed surface.

<u>ઉપથ</u>. If the electric Field is given by 6i+3j+4k calculate the electric flux through a surface of area 20 units lying in Yz plane

flux through surface of area 20 units:

$$\Phi_E = \vec{E} \cdot \vec{S}$$

$$\phi_{\varepsilon} \,=\, \left(6\,\hat{\mathbf{1}} + 3\,\hat{\mathbf{J}} + 4\,\hat{\mathbf{k}} \,\right) \,.\, \left(20\,\,\hat{\mathbf{1}} \,\right)$$

flux through all sides except shaded sides (1 and 2) are zero because angle blu area vector and electric field vector is zero.

\overrightarrow{S}_{1} \overrightarrow{S}_{2} \overrightarrow{S}_{3} \overrightarrow{S}_{4}

flux for side-1

$$\phi_i = \vec{E} \cdot \vec{s}_i$$

$$\phi_i = 0$$

$$S_1 = Q^2$$

$$E = 2(0) = 0 \frac{N}{c}$$

flux for side-2

$$\phi_z = ES_z$$

$$\phi_2 = 2a^3$$

$$x = a$$

flux thorough cube :-

$$\phi_{cube} = \phi_1 + \phi_2$$

$$\Rightarrow$$

$$\phi_{cube} = 2a^3$$

 $\frac{\text{Ques.}}{5\times 10^5 \text{N}} \quad \text{A circular plane sheet of radius } 10\text{cm is placed in a uniform electric field of} \\ 5\times 10^5 \text{N} \quad \text{C}^{-1}, \text{ making an angle of } 60^\circ \text{ with field. The electric flux through the sheet is}$

$$\phi_{\epsilon} = EA \cos \theta = \vec{E} \cdot \vec{A}$$

$$A = 30^{\circ}$$

- 949. Consider a uniform electric field E = $3 \times 10^3 \,\hat{i} \,$ N/C.
 - (a) What is the flux of this field through a square of 10 cm on a side whose plane is parallel to the yz plane?
 - (b) What is the flux through the same square if the normal to its plane makes a 60° angle with the x-axis?

 Do by yourself.

Ques.

The electric field components in Fig. are $E_x=ax^{1/2},\,E_y=E_z=0$, in which $lpha = 800 N \, / \, Cm^{1/2}$. Calculate the flux through the cube

If a = 0.1 m is the side of cube then the charge within the cube is:

flux through all sides except shaded sides (1 and 2) are zero because angle blw area vector and electric field vector is zero

flux for side-1

$$\varphi_i = \vec{E} \cdot \vec{s_i}$$

$$s_1 = a^2$$

$$x = a$$

flux for side-2

$$\phi_z = E S_z$$

$$\phi_2 = \sqrt{2} \propto \alpha^{5/2}$$

$$S_2 = Q^2$$

$$E = \alpha (2a)^{1/2} = \sqrt{2} \alpha a^{1/2}$$

flux thorough cube :-

$$\phi_{cute} = \phi_1 + \phi_2$$

$$\varphi_{\text{cube}} = \ \varphi_{\text{i}} + \varphi_{\text{2}} \qquad \qquad \Rightarrow \qquad \qquad \varphi_{\text{cube}} = \ \alpha \ \alpha^{5/2} \left(\sqrt{2} - 1 \right)$$

Quel Calculate the electric flux through each of the six faces of a closed cube of length l, if a charge q is placed (a) at its centre and (b) at one of its vertices.

$$\phi_{\varepsilon} = \frac{9}{\varepsilon_{o}}$$

(b)

change enclosed by cube = 9/8

then
$$\phi_E = \frac{q}{8 \epsilon_0}$$

A hollow cylindrical box of length 1 m and area of cross-section 25 cm2 is placed in a Ques. three dimensional coordinate system as shown in the figure. The electric field in the region is given by $\vec{E} = 50x\hat{i}$, where E is in NC⁻¹ and x is in metres.

Find

- (i) Net flux through the cylinder.
- (ii) Charge enclosed by the cylinder.

Do by yourself

Ques. A spherical Gaussian surface encloses a charge of $8.85 imes 10^{-8} C$ (i) Calculate the electric flux passing through the surface (ii) If the radius of Gaussian surface is doubled, how would the flux change?

$$\varphi_{\varepsilon} = \frac{8.85 \times 10^{-8}}{8.85 \times 10^{-12}} \Rightarrow \varphi_{\varepsilon} = 10^{4} \text{ N m}^{2}/_{c}$$

$$\Rightarrow \qquad \phi_{\rm e} = 10^{\rm 4} \ {\rm N}$$

- (ii) from eqn (i); flux does not depend on reading of sphere. Hence no change in flux.
- A point charge $17.7 \mu C$ is located at the centre of the cube of side 0.03 m Find the electric flux through each Ques. face of the cube.

$$\phi_{\rm E} = \frac{q}{\epsilon_{\rm o}}$$

flux thorough each side of cube :

$$\Phi_{\rm E}' = \frac{q}{6E_0} = 3.3 \times 10^{5} \, \text{Nm}^2/c$$

9= 17.7 HC = 17.7 X 10-6 C

Quez. The electric field components due to a charge inside the cube of side 0.1 m are shown in figure.

where, $E_x = \alpha$, where $\alpha = 500 \text{ N/C-m}$, $E_v = 0$, $E_z = 0$.

Calculate

- (a) the flux through the cube and
- (b) the charge inside the cube.

Do by yourself

Given a uniform electric field $\overrightarrow{E} = 5 \times 10^3 \text{ ln}/C$, find the flux of this field through a square of 10 cm on a side whose plane is parallel to the y-z plane. What could be the flux through the same square if the plane makes 30° angle with the x-axis? Do by yourself.